Role-Based Access
Control Models

Ravi S. Sandhu

George Mason University and
SETA Corporation

Edward J. Coyne

Hal L. Feinstein

Charles E. Youman
SETA Corporation

Security administration of
large systems is complex, but
it can be simplified by a role-
based access control approach.
A family of increasingly
sophisticated models shows
how RBAC works.

Computer

tarting in the 1970s, computer systems featured multiple applica-

tions and served multiple users, leading to heightened awareness

of data'security issues. System administrators and software devel-
opers alike focused on different kinds of access control to ensure that only
authorized users were given access to certain data or resources. One kind
of access control that emerged is role-based access control (RBAC).

A role is chiefly a semantic construct forming the basis of access con-
trol policy. With RBAC, system administrators create roles according to
the job functions performed in a company or organization, grant permis-
sions (access authorization) to those roles, and then assign users to-the
roles on the basis of their specific job responsibilities and-qualifications
(see sidebar “Role-based access control terms and concepts”).

Arole can represent specific task competency, such as that of a physician
or a pharmacist. A role can embody the authority and responsibility of;
say, a project supervisor. Authority and responsibility are distinct from
competency. A person may be competent to manage several departments-
but have the responsibility for only the department actually managed.
Roles can also reflect specific duty assignments rotated through multiple:
users—for example, a duty physician or a shift manager. RBAC models
and implementations should conveniently accommodate all these mani-*
festations of the role concept.

Roles define both the specific individuals allowed to access resources
and the extent to which resources are accessed. For example, an opera-
tor role might access all computer resources but not change access per-
missions; a security-officer role might change permissions but have no
access to resources; and an auditor role might access only audit trails.
Roles are used for system administration in stch network operating sys-
tems as Novell’s NetWare and Microsoft’s Windows NT.)

The particular combination of users and permissions brought together
by arole tend to change over time. The permissions associated with a role;
on the other hand, are more stable; they tend to change less often than
the people who fill the job function that role represents. Therefore, bas-
ing security administration on roles rather than on permissions is simpler.
Users can be easily reassigned to different roles as needs change. Similarly,
as a company acquires new applications and systems, roles can have new
permissions granted and existing permissions revoked.

This article explains why RBAC is receiving renewed attention as a
method of security administration and review; describes a framework:of
four reference models we have developed to better understand RBAC and
categorize different implementations, and discusses the use of RBAC to

. manage itself. Our framework separates the administration of RBAC from

its access control functions.

NEEDS ADDRESSED BY ROLES

Arecent study of 28 organizations by the National Institute of Standards
and Technology® (NIST) demonstrates that RBAC addresses many differ-
ent needs in the commercial and government sectors. Access control
requirements were found to be determined by a need for customer, stock-
holder, and insurer confidence; personal information privacy; prevention
of unauthorized financial asset distribution and unauthorized long-dis- -

0018-9162/96/$5.00 © 1996 IEEE

tance telephone calls; and adherence to professional stan-
dards. Moreover, the study found that many organizations

* based access control decisions on “the roles that indi-
vidual users take on as part of the organization”;

« preferred to centrally control and maintain access
rights that reflect the organization’s protection guide-
lines; and

* viewed their access control needs as unique, believ-
ing that commercially available products lacked ade-
quate flexibility.

RBAC is attracting strong interest in the standards
arena. Roles are being considered as part of the emerging
SQL3 standard for database management systems on the
basis of the implementation of roles in Version 7 of Oracle.
Roles have also been incorporated in the commercial secu-
rity profile of the “common criteria” draft.2 RBAC is also
in tune with prevailing technology and business trends.
Numerous software products, for example, directly sup-
port some form of RBAC, and others support closely
related concepts, such as user groups, through which roles
can be implemented.

REASONS TO USE RBAC

Renewed interest in RBAC has focused on general sup-
port at the application level. Traditionally, specific appli-
cations have had to encode RBAC internally, with existing
operating systems and environments offering little appli-
cation-level RBAC support. This is beginning to change;
however, the challenge is to identify sufficiently flexible
yet easy-to-use application-independent facilities to sup-
port many applications with minimal customization.

Although RBAC’s usefulness is widely acknowledged,
there is little agreement on what RBAC means. As a result,
RBAC is open to interpretation by researchers and system
developers. Sophisticated variations of RBAC include the

capability to establish relations between roles, between
permissions and roles, and between users and roles. For
example; two roles can be established as mutually exclu-
sive—the same user is not allowed to assume both. Roles
can also acquire inheritance relations, whereby one role
inherits permissions assigned to a different role. These
role-role relations can enforce security policies, including
separation of duties and delegation of authority. Pre-
viously, these relations would have required application-
software encoding; with RBAC, they can be specified once
for a security domain.

With RBAC, role-permission relationships can be pre-
defined, which makes it simple to assign users to the pre-
defined roles. The NIST study! indicates that permissions
assigned to roles, unlike user membership in roles, tend
to change relatively slowly. The study also found it desir-
able to let administrators confer and revoke user mem-
bership in existing roles without authorizing these
administrators to create new roles or change role-permis-
sion assignments. One reason for this finding is that assign-
ing users to roles typically requires less technical skill than
assigning permissions to roles. Without RBAG, it can also
be difficult to determine what permissions have been
authorized for what users.

Access control policy is embodied in RBAC components
such as role-permission, user-role, and role-role relation-
ships. These components collectively determine whether
aparticular user is allowed access to a certain piece of sys-
tem data. RBAC components can be configured directly by
the system administrator or indirectly by appropriate roles
as delegated by the system administrator. The policy
enforced in a given system results from the specific con-
figuration of RBAC components as directed by the system
administrator. Because the access control policy can, and
usually does, change over the system life cycle, RBAC
offers a key benefit through its ability to modify access con-
trol to meet changing organizational needs.

Role-hased access control terms and concepts

_one to the other.!

Access—A specific typeof interaction between a subject

».and:an object that results in the flow of mformatuon from amongroles.
S S s ‘Sessmn——A mappmg between a user and an agtwated sub-

February 1996

“Role hierarchy-—A partlal order rela‘uonshlp established

Although the RBAC concept is policy neutral, it directly
supports three well-known security principles:

* Least privilege: Only those permissions required for

the tasks performed by the user in the role are

assigned to the role.

Separation of duties: Invocation of mutually exclusive

roles can be required to complete a sensitive task,

such as requiring an accounting clerk and an account

manager to participate in issuing a check.

¢ Data abstraction: Instead of the read, write, execute
permissions typically provided by the operating sys-
tem, abstract permissions, such as credit and debit
for an account object, can be established.

Two caveats: RBAC cannot enforce the way these prin-
ciples are applied. Theoretically, a system administrator
could configure RBAC to violate these principles. Also, the
degree to which data abstraction is supported will be
determined by the implementation details.

RBAC is not a panacea for all access control issues. More
sophisticated methods are required to deal with situations
that control operation sequences. For example, where a
purchase requisition requires various steps before the pur-
chase order can be issued, RBAC does not attempt to
directly control the permissions for such an event
sequence. Other forms of access control can be layered on
top of RBAC for this purpose. (See Mohammed and Dilts®
and Thomas and Sandhu.#) We regard operation sequence
control to be outside the scope of RBAC, although RBAC
can be a foundation on which to build such controls.

ROLES AND RELATED CONCEPTS

Many access control systems commonly provide groups
of users as the access control unit. A major difference
between groups and roles is that groups are typically
treated as a collection of users but not as a collection of
permissions. A role, serving as an intermediary, is both a
collection of users and a collection of permissions.

In Unix, because group membership is defined in two
files (/etc/passwd and /etc/group), it is easy to determine
the users belonging to a particular group. Permissions are
granted to groups on the basis of permission bits associ-
ated with individual files and directories. Determining the
permissions granted to a particular group generally
requires a traversal of the entire file system tree. It is eas-
ier, therefore, to determine a group’s membership than its
permissions. Moreover, the assignment of permissions to
groups is highly decentralized. Essentially, the owner of
any Unix file system subtree can assign permissions for
that subtree to a group. Although Unix groups are differ-
ent from our concept of roles, in certain situations Unix
groups can implement roles.

Groups versus roles

To illustrate the qualitative nature of the group-versus-
role distinction, let’s consider a hypothetical system in
which it takes twice as long to determine group member-
ship as to determine group permissions. Let’s assume that
group permissions and membership can be changed only
by the system administrator. In this example, the group
mechanism closely resembles our role concept.

Computer

Our example suggests that (1) it should be roughly as easy
to determine role membership as role permissions, and (2)
control of role membership and role permissions should be
relatively centralized in a few users. Many mechanisms claim-
ing to be role based have neither of these characteristics.

Roles and compartments

A question we're frequently asked concerns the relation-
ship of roles to compartments. Compartments are part of
the security label structure used in the classified defense
and government sectors® and are based on the “need to
know,” which has a semantic connotation regarding the
information available under a compartment label analo-
gous to the semantic connotation of role. This idea essen-
tially underlies the apparent similarity of compartments
and roles. However, compartments are used for the specific
policy of one-directional information flow in a lattice of
labels, whereas roles are not confined to any single policy.

Discretionary and mandatory access

A long-standing distinction between discretionary and
mandatory access controls, respectively known as DAC and
MAC, emerged from defense security research. MAC con-
trols access on the basis of security labels attached to users
(more precisely, subjects) and objects.> DAC controls access
to an object on the basis of an individual user’s permissions
and/or denials. Typically, the object’s owner is another user,
who establishes the permissions and/or denials. RBAC is
an independent component of access control, coexisting
with MAC and DAC when appropriate. In'such a case, access
is allowed only if permitted by RBAC, MAC, and DAC. In
other cases, we expect that RBAC will exist by itself.

Arelated issue is whether RBAC itselfis a discretionary
ora mandatory mechanism. The answer depends on how
the terms are defined and on the nature and configuration
of permissions, roles, and users in an RBAC system. Our
understanding of mandatory means that individual users
have no choice regarding which permissions or users are
assigned to a role. Discretionary signifies that individual
users make these decisions. Recall that by itself, RBAC is
policy neutral; however, individual RBAC configurations
can support a mandatory policy, while others can support
a discretionary policy.

A FAMNILY OF REFERENCE MODELS

To explore RBAC’s various dimensions, we have defined
a family of four conceptual models. Figure 1a shows the
model relationships and Figure 1b portrays their essential
characteristics. RBAG,, as the base model at the bottom,
is the minimum requirement for an RBAC ‘system.
Advanced models RBAC, and RBAC, include RBAC,, but
RBAC, adds role hierarchies (situations where roles can
inherit permissions from otherroles), whereas RBAC, adds
constraints (which impose restrictions on acceptable con-
figurations of the different components of RBAC): RBAC,
and RBAGC, are incomparable to one another. The-consol-
idated model, RBAC,, includes RBAC, and RBAC; and, by
transitivity, RBAC,.

Researchers and developers can compare their systems
and models with our reference models. The four models
can also serve to guide product development and customer
evaluation.

et ':\‘
1 Role 4
i hierarchy

RBAG,

(R

Permissions

P

Constraints

Figure 1. A family of role-based access control models. RBAC,, as the base model at the bottom, is the mini-

mum requirement for an RBAC system. Advanced models RBAC, and RBAC, include RBAC,, but RBAC, adds
role hierarchies, whereas RBAC, adds constraints. The consolidated model, RBAC,, includes RBAC, and

RBAC, and, by transitivity, RBAC,.

For the following discussion of the models, we assume
that a single system administrator is the only one autho-
rized to configure the various sets and relations of the
models. A more sophisticated management model is dis-
cussed later.

Base model-—RBAC,

In Figure 1b, the base model RBAC, consists of every-
thing except role hierarchies and constraints. Four enti-
ties are shown: users (U), roles (R), permissions (P), and
sessions (S).

USERS AND ROLES. For simplicity in our model, user is
a human being. A role is a named job function within the
organization that describes the authority and responsi-
bility conferred on a member of the role.

PERMISSIONS. A permission is an approval of a partic-
ular mode of access to one or more objects in the system.
The terms authorization, access right, and privilege are also
used in the literature to denote a permission. Permissions
are always positive and confer on their hoider the ability
to perform an action in the system. Objects are data objects
or resource objects represented by data in the computer
system. Our conceptual model accommodates many inter-
pretations for permissions, from those where access is per-
mitted to an entire subnetwork, to those where the unit of
access is a particular field of a particular record. Some
access control literature discusses negative permissions,
which deny rather than confer access. However, we con-
sider access denial to be a constraint rather than a nega-
tive permission.

The nature of a permission depends largely on system
type and implementation; thus, a general access-control
model must treat permissions somewhat as uninterpreted
symbols. Because each system type protects objects of the
abstraction it implements, an operating system, for exam-
ple, protects files, directories, devices, and ports through

operations such as read, write, and execute. A relational
database management system protects relations, tuples,
attributes, and views through operations such as select,
update, delete, and insert. An accounting application pro-
tects accounts and ledgers through operations such as
debit, credit, transfer, create account, and delete account.

Permissions can apply to single objects or to many, and
they can be as specific as read access to a particular file or
as generic as read access to all files belonging to a partic-
ular department. The manner in which individual per-
missions are joined into a generic permission so that they
can be assigned as a single unit is highly implementation
dependent.

Figure 1b shows user assignment (UA) and permission
assignment (PA) relations; both are many-to-many and
both are key to RBAC. A user can belong to many roles,
and a role can have many users. Similarly, a role can have
many permissions, and the same permission can be
assigned to many roles. Ultimately, the user exercises per-
missions. The role’s position as an intermediary to let a
user exercise a permission provides greater control over
access configuration and review than does a direct rela-
tionship between users and permissions.

SESSIONS. Users establish sessions during which they
may activate a subset of the roles they belong to. Each ses-
sion maps one user to possibly many roles. The double-
headed arrow from the session to R in Figure 1b indicates
that multiple roles are simultaneously activated. The per-
missions available to the user are the union of permissions
from all roles activated in that session. Each session is asso-
ciated with a single user, as indicated by the single-headed
arrow from the session to U in Figure 1b. This association
remains constant for a session’s duration. The concept of
a session equates to the traditional notion of subject in the
access control literature.

A user might have multiple sessions open simultane-

_ously, each in a different window on a workstation screen.

February 1996

Figure 2. Examples of role hierarchies.

Each session might combine different active roles. This
RBAC, feature supports the least-privilege principle. A user
belonging to several roles can invoke any subset of them
that enables tasks to be accomplished in a session. Thus,
a user who is a member of a powerful role can normally
keep this role deactivated and explicitly activate it when
needed. (All constraints are discussed in the RBAC, sub-
section.) In the RBAC, model, the user’s discretion alone
determines which roles are activated in a given session.
This model also lets roles be dynamically activated and
deactivated during a session.
The formal definition of RBAC, follows.

Definition 1—The RBAC, model has the following
components:

e U,R,P,and S (users, roles, permissions, and sessions,
respectively);

* PA ¢ P X R, a many-to-many permission-to-role
assignment relation;

¢ UA c UxR, amany-to-many user-to-role assignment

relation;

user : S — U, afunction mapping each session s; to the

single user user(s;) (constant for the session’s life-

time); and

roles : S — 2R, a function mapping each sessions; to a

set of roles roles(s) < {r| (user(s), r) € UA} (which

can change with time) and session s; has the permis

S101S U ropes wipl (p,1) € PA}.

Each role would likely be assigned at least one permission,
and each user atleast one role. The model does not require
this, however.

As noted earlier, RBAC, treats permissions as uninter-
preted symbols because permissions are implementation
and system dependent. Our framework requires that per-
missions apply to data and resource objects and not to the
components of RBAC itself. Permissions to modify the sets
U, R, and P and relations PA and UA are called adminis-

Computer

trative permissions and are discussed in the section on
issues in role administration. i

Sessions are under the control of individual users. As
far as the model is concerned, a user can create a session
and choose to activate some subset of the user’s roles.
Roles active in a session can be changed at the user’s dis-
cretion. The session terminates at the user’s initiative.
(Some systems will terminate a session if it is active for too
long. Strictly speaking, this is a constraint and properly
belongs in RBAC,.)

Some authors® consider duties, in addition to permis-
sions, to be an attribute of roles. A duty is a user’s obliga-
tion to perform one or more.tasks that are generally
essential for an organization to function smoothly. In our
view, duties are an advanced concept that does not belong
in RBAC,. We feel that incorporation of duties in access con-
trol models requires further research and at present is not
incorporated in our advanced models. One approach might
treat duties as it does permissions. Another approach:to
incorporating duties would have as its basis new access con-
trol paradigms such as task-based authorization.*

Role hierarchies—RBAC,
The next model in our framework, RBAC,, introduces

“role hierarchies (RH), as indicated in Figure 1. Role hier-

archies are invariably discussed along with roles in the lit-
erature’ and are commonly implemented in systems that
provide roles.

Hierarchies are a natural means for structuring roles to
reflect an organization’s lines of authority and responsi-
bility (see Figure 2). By convention, more- powerful
(senior) roles are shown toward the top of these diagrams
and less powerful (junior) roles toward the bottom.

In Figure 2a, the junior-most role is that of health-care
provider. The physician role is senior to health-care
provider and thereby inherits all permissions from health-
care provider. The physician role can have permissions
besides those it inherited. Permission inheritance is tran-
sitive, so in Figure 2a, for example, the primary-care physi-
cian role inherits permissions from both the physician and
health-care-provider roles. Primary-care physician and
specialist physician both inherit permissions from the
physician role, but each will have different permissions
directly assigned to it. Figure 2b illustrates multiple inher-
itance of permissions, where the project supervisor role
inherits from both test engineer and programmer roles:

Mathematically, these hierarchies are partial orders. A
partial order is a reflexive, transitive, and antisymmetric:
relation. Inheritance is reflexive because a role inherits its
own permissions, transitivity is a natural requirement in
this context, and antisymmetry rules outroles that inherit
from one another and would therefore be redundant.

The formal definition of RBAC, follows.

Definition 2—The RBAC, model has the following
components:

* U R, P, S, PA, UA, and user are unchanged from
RBAC,;

* RHcRxRisapartial order on R called the role hier-
archy or role dominance relation, also written as>;
and

¢ roles : S — 2! is modified from RBAC, to require
roles(s) = {r | @r’2r)[(user(s), r) € UA]} (which
can change with time) and session s, has the permis-
SI0NS U, ¢ ropes (si){pi @r’<nl(p,r") e PAl}.

A user can establish a session with any combination of
roles junior to the user’s own roles. Similarly, the permis-
sions in a session are those directly assigned to the ses-
sion’s roles plus those assigned to junior roles.

LIMITED INHERITANCE. Sometimes it is useful to limit
the scope of inheritance. As an example, let’s look at the
hierarchy of Figure 2b, where the project supervisor role
is senior to both the test engineer and programmer roles.
It’s entirely reasonable that test engineers might want to
keep some permissions private to their role and prevent
their inheritance by project supervisors. For example,
access to incomplete work in progress, although appro-
priate for test engineers, might not be appropriate for the
senior role. This situation can be accommodated by defin-
ing a new role, test engineer ', and relating it to test engi-
neer (see Figure 2¢). The private permissions of test
engineers can be assigned to the test engineer " role. Test
engineers are assigned to the test engineer " role and
inherit permissions from the test engineer role; these per-
missions are also inherited upward by the project super-
visor role. Test engineer " permissions, however, are not
inherited by the project supervisor role. We call test engi-
neer " an example of a private role; Figure 2¢ shows a sec-
ond example of a private role, that of programmer .

Private roles are achieved in some systems by blocking
upward inheritance of certain permissions, but this tech-
nique prevents the hierarchy from accurately depicting per-
mission distribution. It is preferable to introduce private
roles and keep the hierarchical role relationship intact.

PRIVATE SUBHIERARCHY. Figure 3 shows how a private
role subhierarchy can be built. The hierarchy of Figure 3a
has four task roles, T1, T2, T3, and T4, all of which inherit
permissions from the common project-wide role P. Project
supervisors are assigned to role S. Tasks T3 and T4 are a
subproject with P3 as the subproject-wide role and S3 as
the subproject supervisory role. Role 1 in Figure 3bis a
private role for members of task T1. Suppose the subpro-
ject of Figure 3a comprising roles S3, T3, T4, and P3
requires a private subhierarchy within which private per-
missions of the project are shared without inheritance by
S. The entire subhierarchy is replicated as shown in Figure
3b. The permissions inheritable by S are appropriately
assigned to $3, T3, T4, and P3, whereas the private ones
are assigned to $37, T3', T4’, and P3’, allowing their
inheritance within the subproject only. As before, mem-
bers of the subproject team are directly assigned to S3 7,
T3’,T4’, or P3’. The system’s private roles are clearly seen
here; this assists in access review to determine the nature
of the private permissions.

Constraints model—RBAC,

The third reference model in our framework, RBAC,,
introduces constraints, as shown in Figure 1b. Although
we have called our models RBAC, and RBAC,, there isn’t
really an implied progression. Either constraints or role

Project supervisor
5

Subproject
supervisor: -

Figure 3. Role hierarchies for a project. The
hierarchy of Figure 3a has four task roles, T1, 72, 13,
and T4, all of which inherit permissions from the
common project-wide role P. Role S at the top of
the hierarchy is intended for project supervisors.
Tasks T3 and T4 are a subproject, with P3 as the sub-
project-wide role and S3 as the subproject supervi-
sory role. Role T1 in Figure 3b is a private role for
members of task T1. Figure 3¢ shows the adminis-
trative hierarchy of the security officer (system
administrator) role. :

hierarchies can be introduced first (indicated by the
incomparable relation between RBAC, and RBAGC, in
Figure 1a).

Constraints are an important aspect of RBAC and are

February 1996

sometimes argued to be the principal motivation behind
RBAC. A common example is that of mutually disjoint
organizational roles, such as those of purchasing manager
and accounts payable manager. Generally, the same indi-
vidual is not permitted to belong to both roles, because
this creates a possibility for committing fraud. This well-
known, time-honored principle is separation of duties.

Constraints are a powerful mechanism for laying out
higher level organizational policy. Once certain roles are
declared mutually exclusive, there’s less concern about
assigning individual users to roles. User assignment can
be delegated and decentralized without fear of compro-
mising the organization’s overall policy objectives.

Aslong as RBAC’s management is centralized in a single
system administrator, constraints are simply a conve-
nience, because the same effect could be achieved by cau-
tion on the part of the system administrator. However, if
RBAC management is decentralized, constraints become
a mechanism by which senior system administrators can
restrict users’ ability to exercise administrative privileges.
This lets the chief system administrator lay out the broad
scope of what is acceptable and make it mandatory for
other system administrators and users who participate in
RBAC management.

With respect to RBAC,, constraints can apply to the UA
and PA relations and the user and roles functions for ses-
sions. When applied, constraints are predicates that return
a value of “acceptable” or “not acceptable.”

Intuitively, constraints are better viewed according to
their kind and nature; they can, for example, be regarded
as sentences in a formal language. Because we discuss con-
straints informally, the following definition reflects that.

Definition 3—RBAC, is unchanged from RBAC,
except for requiring that there be constraints to determine
the acceptability of various components of RBAC,. Only
acceptable values will be permitted.

RBAC implementation considerations generally call for
simple constraints that can be efficiently checked and
enforced. Fortunately, in RBAC simple constraints can go
a long way, and we next discuss some constraints that we
feel are reasonable to implement. Because most con-
straints applied to the user assignment relation have a
counterpart that applies to the permission assignment
relation, we discuss constraints on these two components
in parallel.

MUTUALLY EXCLUSIVE ROLES. The most common RBAC
constraint is mutually exclusive roles. The same user can
be assigned to at most one role in amutually exclusive set.
This supports separation of duties, which is further
ensured by a mutual exclusion constraint on permission
assignment.

The dual constraint on permission assignment can pro-
vide additional assurance for separation of duties but has
received hardly any mention in the literature. This dual
constraint requires that the same permission be assigned
to at most one role in a mutually exclusive set. For exam-
ple, consider two mutually exclusive roles, accounts man-
ager and purchasing manager. Mutual exclusion in terms
of UA specifies that one individual cannot belong to both

Computer

roles. Mutual exclusion in terms of PA specifies that the
same permission—to issue checks, for instance-—cannot
be assigned to both roles. Normally, such a permission
would be assigned to the accounts manager role. The
mutual exclusion constraint on PA would prevent the per-
mission from being inadvertently or maliciously assigned
to the purchasing manager role. More directly, exclusion
constraints on PA limit the distribution of powerful per-
missions. For example, it may not matter whether role A or
role Breceives signature authority for a particular account,

. but what does matter is that only one of the two roles

recejves this permission.

More generally, various combinations of roles can:be
prohibited. For example, a user might belong to both-a”
programmer role and a tester role on different projects,
but within the same project this would be unaccept-
able. Similarly, various combinations of permissions can
be prohibited.

CARDINALITY. Another user assignment constraint is a
maximum number of members in a role. Only one person
can fill the role of department chair; similarly, the num-
ber of roles an individual user can belong to could alsobe
limited. These are cardinality constraints, which can be
correspondingly applied to permission assignment to con-
trol the distribution of powerful permissions. Minimum
cardinality constraints, on the other hand, may be diffi-
cult to implement. For example, if a role requires a mini-
mum number of members, it would be difficult for the
system to know if one of the members disappeared and to
respond appropriately.

PREREQUISITE ROLES. The concept of prerequisite roles
is based on competency and appropriateness, whereby a
user can be assigned to role A only if the user already:is
assigned to role B. For example, only users who are already
assigned to the project role can be assigned to.the testing
role in that project. The prerequisite (project) role is junior
to the new (test) role. In practice, prerequisites between
incomparable roles are less likely to occur.

The dual constraint on permission assignment applies
more at the role end of the PA relation. For consistency,
permission p might be assigned to a role only if that role
already possesses permission g. For instance, in many sys-
tems permission to read a file requires permissionto read
the directory in which the file resides. Assigning the for-
mer permission without the latter would be incomplete.

OTHER CONSIDERATIONS. User assignment constraints
are effective only if suitable external discipline is' main-
tained in assigning user identifiers to human beings. If the
same individual is assigned two or more user identifiers,
separation and cardinality controls break down. A one-to-
one correspondence between user identifiers and human
beings is required. The situation with permission con-
straints is similar. If the same operation is sanctioned by
two different permissions, the RBAC system cannot effec-
tively enforce cardinality and separation constraints.

Constraints also apply to sessions and to the user and
roles functions associated with a session. A user may
belong to two roles but cannot be active in both at the same
time. Other session constraints limit the number of ses-

Other approaches to managing access control

Containment hierarchy
In one approach to access control management, the

~ International Organization for Standardization (ISO) has
: ,developed secunty managemem-related standards and,f

sions a user can have active at the same time. Correspond-
ingly, the number of sessions to which a permission is
assigned can be limited.

A role hierarchy can be considered a constraint in that
a permission assigned to a junior role must also be
assigned to all senior roles, or a user assigned to a senior
role must also be assigned to all junior roles. In a sense,
RBAC, is redundant and subsumed by RBAC,. However,
the existence of role hierarchies should be recognized
accordingly; they’re reduced to constraints only when
redundant permission or user assignments are introduced.
Preferably, hierarchies are supported directly rather than
indirectly with redundant assignment.

Consolidated model—RBAC,

RBAC, provides both role hierarchies and constraints,
as it combines RBAC; and RBAC,. Combining both con-
cepts raises several issues, which we explore next.

CONSTRAINTS ON ROLE HIERARCHIES. Constraints can
apply to the role hierarchy itself, as indicated by the
dashed arrow to RH in Figure 1b. The role hierarchy must
be a partial order (a constraint intrinsic to the model).
Additional constraints can limit the number, if any, of
senior or junior roles that a given role may have. Two or
more roles can also be constrained to have no common
senior (or junior) role. Such constraints are useful where
the authority to change the role hierarchy has been decen-
tralized but the chief system administrator wants to
restrict the manner in which changes are made.

INTERACTIONS. Subtle interactions arise between con-
straints and hierarchies. Suppose that test engineer and
programmer roles are declared mutually exclusive in the
context of Figure 2b. The project supervisor role violates
this mutual exclusion constraint. Such a violation by a
senior role may or may not be acceptable. The model
should therefore accommodate both possibilities.

Negotiated authority

A similar situation concerns cardinality constraints.
Suppose that a user can be assigned to at most one role.
Does an assignment to the test engineer role in Figure 2b
violate this constraint? In other words, do cardinality con-
straints apply only to direct membership, or do they also
carry on to inherited membership?

PRIVATE ROLES. Let’s look at Figure 2c to see how con-
straints affect private roles. The test engineer ’, program-
mer’, and project supervisor roles can be declared
mutually exclusive, and because these have no common
senior role, there’s no conflict. In general, private roles will
not share common seniors with other roles because they
are maximal hierarchical elements; thus, private roles can
be mutually exclusive without causing conflict.

A maximum cardinality constraint of zero members can
be declared for the nonprivate roles. Test engineers must
then be assigned to the test engineer’ role. The test engi-
neer role offers a way to share permissions with the pro-
ject supervisor role.

ISSUES IN ROLE ADMINISTRATION

Our discussions so far have assurned that all RBAC com-
ponents are directly controlled by a single system admin-
istrator, yet in large systems the number of roles -can
exceed hundreds or thousands. Managing these roles and
their interrelationships is a formidable task that is often
highly centralized and delegated to a small team of secu-
rity administrators. Because RBAC’s key advantage is that
it simplifies permission administration, the next step is to
see how RBAC might be used to manage itself. We believe
that the use of RBAC to aid in managing RBAC will be a
decisive factor in RBAC’s overall success. (For different
views on access control management, see sidebar “Other
approaches to managing access control.”) .

Our management model for RBAC is illustrated in
Figure 4, where the constraints apply to all components.
The top half of this figure is essentially the same as Figure

February 1996

“To manage RBAC, Moffet and Sloman? have defined an
laborate mode! based on role domams owners managers

dministrative
permissions
(AP)

Figure 4. Role-based access control administrative model.

1b. Except for administrative roles and administrative per-
missions, the bottom half of the figure mirrors the top half.
Our intent is for administrative roles AR and administra-
tive permissions AP to be respectively disjoint from the
regular roles R and permissions P. The model shows that
permissions can be assigned only to roles and that admin-
istrative permissions can be assigned only to administra-
tive roles; this is a built-in constraint.

The top half of Figure 4 can range in sophistication
across RBAC,, RBAC,, RBAC,, and RBAC,. The bottom half
can similarly range in sophistication across ARBAC,,
ARBAC,, ARBAC,, and ARBAC,, where the first A denotes
administrative. Generally, the administrative model will
be simpler than the RBAC model itself. Thus ARBAC, can
be used to manage RBAC;, but there seems to be no point
in using ARBAG, to manage RBAC,.

Constraints can cut across both top and bottom halves
of Figure 4. We have already described the built-in con-
straint regarding administrative and regular permissiomns;
however, if administrative roles are mutually exclusive
with respect to regular roles, we will have a situation in
which system administrators can manage RBAC but not
use any privileges themselves.

How will the administrative hierarchy be managed?
Theoretically, a second-level administrative hierarchy
could be built to manage the first-level one, and so on, but
this is unnecessary in our opinion. The administrative hier-
archy’s administration can be handled by a single chief
system administrator—a reasonable arrangement for
either a single organization or a single administrative unit
within an organization. Our model does not directly
address the issue of how these units interact.

Administrative authority in RBAC is the ability to mod-

Computer

ify the user assignment, permission assign-
ment, and role hierarchy relations. In a
management model, the permissions that
authorize these administrative operations
must be explicitly defined. The precise
nature of these permissions depends-on
the implementation, but they are generally
alike.

A major management' model issue is
how to establish the scope of the adminis-
trative authority vested in administrative
roles. To illustrate this, look at the hierar-
chies in Figure 3a. The administrative hier-
archy of Figure 3c shows a single chief
security officer (system administrator)
role, which is senior to the three security
officer roles SO1, SO2, and SO3.

The scoping issue essentially concerns
how the tasks in Figure 3a might be man-
aged by the security officers in Figure 3¢, and
we’ll assume the chief security officer (CSO)
can manage all tasks. Suppose SO1 manages
task T1. We do not want-SO1 to automati-
cally inherit management of the junior role
P, so SOV’s scope can be limited to T1.
Similarly, SO2’s scope can be limited to T2.
We’ll assume SO3 can manage the entire
subproject (S3, T3, T4, and P3), which
means SO3’s scope is bounded by S3 at the
top and P3 at the bottom.

Usually, each administrative role is mapped to the sub-
set of the role hierarchy it manages. There are, however,
other aspects of management to be scoped—forexample,
SO1 may be able to add users-only to the T1 role, while
their removal requires the CSO to act. The permissions
and users that the administrative role manages also need
to be scoped, and changes in the role hierarchy itself must
be controlled. For example, because SO3 manages the sub-
hierarchy between §3 and P3, SO3 could be authorized to
add additional tasks to that subproject.

OUR FAMILY OF RBAC MODELS systematically spans the spec-
trum from simple to complex. These models provide a
common frame of reference for related research and devel-
opment. We've shown, through a management model,
that RBAC can be used to control itself. This supports our
position that RBAC is policy neutral rather than a model of
a specific security policy.

Many research probléms must be solved if RBAC’s poten-
tial is to be fulfilled. One is to develop a systematic
approach to RBAC configuration design and. analysis,
although progress has been reported.8*! Because another
problem is the lack of information about constraints with
respect to RBAC, a constraints categorization and taxon-
omy would be useful. Also lacking is a formal notation for
stating and enforcing constraints, along with some mea-
sure of enforcement difficulty. The ability to reason about
constraints and analyze the net effect of an RBAC configu-
ration in terms of higherlevel policy objectives is an impor-
tant, open research area. The management aspects of RBAC
need further work. Development of a systematic method-

ology that deals with the design and analysis of role hier-
archies, constraints, and RBAC management in a unified
framework is yet another challenging research goal.

Many of these open issues and problems are intertwined
and will require an integrated approach to be satisfactorily
resolved. 1

Acknowledgments

We are grateful to David Ferraiolo and Janet Cugini of
the National Institute of Standards and Technology (NIST)
for useful comments while this work was in progress. We
also thank the anonymous reviewers, whose comments
and suggestions have significantly improved the article.
This work is funded in part by contracts 50-DKNA-4-00122
and 50-DKNB-5-00188 from the NIST. The work of Ravi

Sandhu is also supported by grant CCR-9503560 from the

National Science Foundation.

References
1. D.F.Ferraiolo, D.M. Gilbert, and N. Lynch, “An Examination
of Federal and Commercial Access Control Policy Needs,” Proc.
NIST-NCSC National Computer Security Conf., 1993, Nat'l Inst.
Standards and Technology, Gaithersburg, Md., pp. 107-116.

2. Common Criteria Editorial Board, Common Criteria for Infor-
mation Technology Security Evaluation, draft, Version 1.0, Nat'l
Inst. Standards and Technology, Gaithersburg, Md., Jan. 1996.

3. 1. Mohammed and D.M. Dilts, “Design for Dynamic User-Role-
Based Security,” Computers & Security, 1994, Vol. 13, No. 8,
pp. 661-671.

4. R.Thomas and R.S. Sandhu, “Conceptual Foundations for a
Model of Task-Based Authorizations,” Proc. IEEE Computer
Security Foundations Workshop 7, IEEE Press, Piscataway,
N.J., June 1994, pp. 66-79.

5. R.S. Sandhu, “Lattice-Based Access Control Models,” Com-
puter, Vol. 26, No. 11, Nov. 1993, pp. 9-19.

6. D.Jonscher, “Extending Access Controls with Duties—Real-
ized by Active Mechanisms,” in Database Security VI: Status
and Prospects, B. Thuraisingham and C.E. Landwehr, eds.,
Elsevier North-Holland, 1993, pp. 91-111.

7. D.Ferraiolo and R. Kuhn, “Role-Based Access Controls,” Proc.
15th NIST-NCSC Nat’l Computer Security Conf., Nat’l Inst. Stan-
dards and Technology, Gaithersburg, Md., 1992, pp. 554-563.

8. M.-Y. Hu, S.A. Demurjian, and T.C. Ting, “User-Role Based
Security in the ADAM Object-Oriented Design and Analyses
Environment,” in Database Security VIII: Status and Prospects,
J. Biskup et al., eds., Elsevier North-Holland, 1995, pp. 333-
348.

9. M. Nyanchama and S. Osborn, “Access Rights Administra-
tion in Role-Based Security Systems,” in Database Security
VII: Status and Prospects, J. Biskup et al., eds., Elsevier North-
Holland, 1994, pp. 37-56.

10. S.H. von Solms and I. van der Merwe, “The Management of
Computer Security Profiles Using a Role-Oriented Approach,”
Computers & Security, Vol. 13, No. 8, 1994, pp. 673-680.

11. E.B. Fernandez, J. Wu, and M.H. Fernandez, “User Group
Structures in Object-Oriented Database Authorization,” in
Database Security VIII: Status and Prospects, J. Biskup et al.,
eds., Elsevier North-Holland, 1995.

Ravi 8. Sandhu is professor and associate chairman of
Information and Software Systems Engineering at George
Mason University, Fairfax, Virginia; director of the Labora-

B

tory for Information Security Technology at GMU; and a
member of the senior staff at SETA Corporation, McLean,
Virginia. His principal research and teaching interests are in
information and systems security. Sandhu received PhD and
MS degrees from Rutgers University, New Jersey, and BTech
and MTech degrees from IIT Bombay and Delhi, India, respec-
tively. He has consulted and extensively published on com-
puter security. Sandhu chairs ACM’s Special Interest Group
on Security Audit and Control.

Edward J. Coyne is a principal scientist at SETA Corpo-
ration where, as part of a team, he developed an RBAC
demonstration prototype. He is an expert on computer and
communications security and has worked on relevant
National Security Agency programs. Previously, at the Mitre
Corporation, Coyne supported the National Computer Secu-
rity Center in security evaluation of commercial computer
systems. He received a PhD in computational linguistics from
Georgetown University, Washington, D.C., in 1977; an MAin
linguistics from American University, Washington, D.C., in
1972; and an MA in science and public policy in 1965 and a
BS in astronomy in 1963, both from Case Institute of Tech-
nology, Cleveland, Ohio.

Hal L. Feinstein is a senior telecommunications specialist
with SETA Corporation and is experienced in all aspects of
information security, including policy development and risk
analysis, cryptography and communications security, and
Defense Department trusted computer system evaluation cri-
teria analysis techniques. Previously, at the Mitre Corpora-
tion, Feinstein was a member of the company’s networking
center, where he supported the Defense Information System
Agency’s Defense Data Network Project Management Office
to solve protocol-level problems. Feinstein was also an eval-
uator for the National Security Agency’s National Computer
Security Center. He received a BS in computer science from
State University of New York at Potsdam in 1974

Charles E. Youman has been a member of the senior tech-
nical staff at SETA Corporation since 1991 Previously, at the
Mitre Corporation, Youman analyzed host security require-
ments for the Defense Department’s trusted computer system
evaluation criteria for the worldwide Military Command and
Control System Information System. For the Federal Bureau
of Investigation, Youman was a certified information systems
auditor in a project to modernize the National Crime Infor-
mation Center. He received an MS in administration, systems
management, from George Washington University, Washing-
ton, D.C., in 1976 and a bachelor of engineering degree in
information engineering from Vanderbilt University, Nash-
ville, Tennessee, in 1969. He was awarded the certified infor-
mation systems auditor designation by the Information
Systems Audit and Control Association in 1979.

Readers can contact Ravi Sandhu at the ISSE Department, MS
4A4, George Mason University, Fairfax, VA 22030; phone
(703) 993-1659, fax (703) 993-1638, e-mail sandhu@isse.
gmu.edu.

Howard Rubin, Computer’s software metrics area editor, coor-
dinated the review of this article and recommended it for pub-

lication. His e-mail address is 71031.377@compuserve.com.

February 1996

